Новости телескоп горизонта событий

Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530. Как предполагают теоретики, "Телескоп горизонта событий" (Event Horizon Telescope) сможет зарегистрировать изображение тени сверхмассивной черной дыры, находящейся в центре нашей Галактики, а также и. Данные проекта «Телескоп горизонта событий» позволили ученым получить изображение тени сверхмассивной черной звезды.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

EHT смог разрешить этот объект благодаря системе синхронизации нескольких телескопов, разбросанных по всей поверхности Земли. В частности, астрономы использовали Very-Long-Baseline-Interferometry VLBI - метод, который объединяет наблюдательную мощность и данные телескопов по всему миру для создания гигантского виртуального радиотелескопа. Наличие нескольких телескопов на разных широтах Земли в сочетании с вращением Земли приводит к созданию телескопа размером с Землю. Каждый из этих телескопов оснащен антенной с чрезвычайно точными атомными часами для регистрации времени, в которое регистрируются радиосигналы от целевого объекта. И они предлагают новое понимание того, как эти гигантские черные дыры взаимодействуют со своим окружением. Однако вблизи края эти черные дыры выглядят удивительно похожими", — говорит Сера Маркофф, сопредседатель научного совета EHT и профессор теоретической астрофизики Амстердамского университета. Результат, полученный с помощью EHT, является экстраординарным.

Еще одна часть истории, которая имеет место, огромный прогресс в научной сфере.

Предполагается, что аппарат проработает на орбите десять лет, из которых три — в одиночном режиме. В это время его научная аппаратура для поддержания высоких параметров чувствительности и противодействия тепловым помехам будет сильно охлаждаться. Хотя российский и американский аппараты рассчитаны на работу в разных диапазонах электромагнитного излучения «Джеймс Уэбб» будет работать в видимом и среднем инфракрасном cпектре, а «Миллиметрон» — в субмиллиметровом и миллиметровом диапазонах , отечественный телескоп будет иметь несомненное преимущество: он позволит изучать объекты, закрытые межзвездной пылью.

Например, активное звездообразование — загадочный и при этом очень «пыльный» процесс. С помощью «Спектра-М» ученые надеются узнать, как именно рождаются звезды и как развивается этот процесс. В отличие от зарубежного коллеги, «Миллиметрон» сможет также проводить быстрые обзоры небольших секторов неба. Если продолжить сравнение с аппаратом «Спектр-Р», то ученые гораздо шире рассматривают потенциал «Миллиметрона» и в рамках второго этапа, когда он будет действовать как единое целое с наземными телескопами.

Дело в том, что «Спектр-Р» работал на гораздо большей длине волны, что было не очень удобно для изучения черных дыр из-за межзвездного рассеивания излучения. При уменьшении длины волны сильно снижается и эффект рассеивания, поэтому «Миллиметрон» сможет рассмотреть весьма далекие области, куда взгляд «Спектра-Р» никогда бы не проник. По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» Event Horizon Telescope — телескопы восьми обсерваторий на разных континентах, а также «Атакамская большая [антенная] решетка миллиметрового диапазона» Atacama Large Millimeter Array — комплекс радиотелескопов, расположенный в чилийской пустыне Атакама. Кроме того, в рамках проекта возможно сотрудничество с Международной радиоастрономической обсерваторией «Суффа», строящейся в Республике Узбекистан.

Особые надежды возлагаются на совместную работу с «Телескопом горизонта событий». Проведенное учеными моделирование показало, что общими усилиями обсерватории смогут получать изображения, качество которых будет в шесть-десять раз лучше, чем то, что «Телескоп горизонта событий» получает сейчас. Что касается режима одиночной антенны, то прямым предшественником «Миллиметрона» можно считать космический телескоп «Гершель» запущен в 2009 г. Однако зарубежный аппарат имел значительно меньший диаметр зеркала — 3.

Иерархия задач Характеристики обсерватории и ее будущее «место работы» позволили ученым сформировать амбициозную научную программу. Основные направления работы: исследования процессов в ранней Вселенной, изучение геометрии пространства-времени вблизи сверхмассивных черных дыр, поиск воды и биомаркеров в нашей галактике. Татьяна Ларченкова объяснила, что при определении приоритетов важно было выявить задачи, которые до запуска «Миллиметрона» не будут решены другими проектами.

Изображение было представлено на пресс-конференции, посвященной открытию, видео-трансляцию можно посмотреть на официальном сайте организации. Предположения о существовании в этом месте черной дыры появились еще в конце XX века, когда астрономы отследили странное движение звезд вокруг объекта, а в 2020 году за это открытие была присуждена Нобелевская премия.

Эти беспрецедентные наблюдения значительно улучшили наше понимание процессов, которые происходят в центре нашей галактики, и дали новые ключи к пониманию того, как черные дыры взаимодействуют со своим окружением», — сказал ученый Джеффри Бауэр из коллаборации ЕНТ. Впрочем, из-за большого удаления от Земли черная дыра, по словам ученых EHT, предстает на небосклоне крошечной точкой — словно пончик, который пытаешься разглядеть на поверхности Луны. Чтобы получить изображение этого объекта, астрофизики использовали сеть из восьми обсерваторий в разных частях Земли, которые и образуют все вместе виртуальный телескоп размером с планету, носящий название Телескопа горизонта событий.

Сбор данных велся в течение «множества ночей» по много часов подряд, что можно сравнить с фотосъемкой с длинной экспозицией, говорят ученые. Затем информация долго обрабатывалась суперкомпьютерами.

«Око» телескопа направили на ярчайший источник света во Вселенной: что увидели ученые

EHT представляет собой виртуальный телескоп массив телескопов диаметром 10 000 км. Чем больше телескоп, тем больше деталей он может зафиксировать. Однако это не один телескоп! Телескоп "Горизонт событий" охватывает большую часть земного шара благодаря объединению нескольких обсерваторий, расположенных по всей планете. Несмотря на такое развертывание технологии, снимок "настоящей" черной дыры еще не сделан, хотя команды EHT представили качественное изображение в 2019 году. Действительно, главное свойство этого типа астрономических объектов заключается в том, что они настолько массивны, что ничто не может от них ускользнуть, даже свет. То, что ученые пытались наблюдать в течение многих лет, это то, что находится вокруг черной дыры, "аккреционный диск". Она состоит из материи и газа, вращающихся вокруг ядра объекта на очень высокой скорости и нагретых до экстремальных температур.

Это делает их практически невидимыми для обычного наблюдения. Несмотря на то, что саму чёрную дыру невозможно наблюдать, вращающийся газ и вещество в её окрестностях излучают достаточно яркий свет, который можно зарегистрировать. Для получения нового изображения коллаборация Event Horizon Telescope использовала эффект поляризации света, что позволило отобразить мощные магнитные поля, окружающие чёрную дыру.

We have collected in our collection street art that you can see in everyday life, as well as those of which you did not even know existed. The aim of the project is to combine the real world and the digital, using street art. We want to show that the same street art equally exists in different forms.

Центр Млечного Пути находится в 27 тыс. Для наблюдателя на Земле обнаруженная черная дыра занимает на небе пространство размером с пончик на Луне. Чтобы получить ее изображение, астрономы синхронизировали работу восьми радиообсерваторий, расположенных на разных континентах, при помощи атомных часов и суперкомпьютеров. В 2019 году та же команда ученых опубликовала первое в истории фото черной дыры — M87 в галактике Мессье 87.

«Необычайное объявление» о центральной черной дыре нашей галактики ожидается 12 мая

В среду представители сети Event Horizon Telescope показали первый в истории снимок окрестностей горизонта событий черной дыры в центре галактики М 87. Карта размещения обсерваторий Телескопа горизонта событий (Event Horizon Telescope), включающий восемь обсерваторий в шести местах (ESO). Мини-печень вместо большой. Крупнейшая цифровая камера. Новости QWERTY №295. Международная коллаборация Event Horizon Telescope, которая сделала историческое первое в истории изображение черной дыры, снова вызвала удивление в научном сообществе.

3. Представлено первое фото черной дыры в центре нашей Галактики

Телескоп горизонта событий разглядел рекордно далекий для себя квазар Now that the Event Horizon Telescope collaboration has released its image of the Milky Way's black hole, the team is focusing on making movies of the two photographed black holes and finding other distant black holes large enough to study.
«Око» телескопа направили на ярчайший источник света во Вселенной: что увидели ученые Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) представили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный Путь, в которой располагается Земля.
Астрономы впервые измерили магнитное поле в окрестностях сверхмассивной черной дыры Международная коллаборация Event Horizon Telescope, которая сделала историческое первое в истории изображение черной дыры, снова вызвала удивление в научном сообществе.

Астрономы впервые измерили магнитное поле в окрестностях сверхмассивной черной дыры

Просмотров 82 Опубликовано 28. Это стало возможным благодаря реализации крупного проекта The Event Horizon Telescope. Ряд мощных радиотелескопов специалисты объединили в единую сеть. Посредством этого им удалось получить невероятно мощный массив. Который в свою очередь способен заглянуть в глубины космоса и приоткрыть тайны черных дыр.

Следовательно, они должны происходить из чрезвычайно ярких источников на большом расстоянии от нашей галактики. Рассматриваемые как пылинка за пределами нашего Млечного Пути, такие квазары могут затмить все миллиарды звезд в их родной галактике. Поначалу казалось непостижимым, что такая не мирная энергия может быть произведена в небольшом пространстве.

Но астрономы поняли, что гравитация является высокоэффективным источником доступной энергии, гораздо больше, чем химические или даже ядерные реакции. Материя, падающая в черную дыру с миллионами или миллиардами массы нашего Солнца, нагревается трением, когда она спирально входит в «аккреционный диск» вещества. Очевидно, что к тому времени, когда такая материя падает ниже горизонта событий, она больше не может испускать свет любой длины волны, но по пути большая часть кинетической энергии движения преобразуется в излучение радио, видимого, ультрафиолетового и x- излучения. Когда-то считавшиеся экзотическим классом объектов, астрономы обнаружили, что практически все большие галактики содержат сверхмассивные чёрные дыры в своем ядре. Некоторые весят миллиарды солнечных масс, в то время как наша собственная Галактика Млечный Путь имеет свою собственную черную дыру, которая весит в 4 миллиона раз больше массы Солнца. Это подводит нас к дерзкому предложению о том, что черные дыры действительно можно увидеть. Художники и специалисты по компьютерной графике создавали изображения, а лауреат Нобелевской премии по физике гравитации Кип Торн давал советы по визуализации черных дыр в фильме «Межзвездный».

Одиночные телескопы далеки от способности увидеть их. Но астрономы связывают два или более радиотелескопов и объединяют свои сигналы с помощью интерферометрии, чтобы эффективно работать вместе как одна большая тарелка. Постоянно расширяющийся спектр связанных удаленных телескопов значительно увеличил разрешающую способность наблюдений. Шепард Доулман из Гарварда дерзко предположил, что объединение радиотелескопов в отдельный мир может достичь разрешающей способности для изображения черной дыры. Чтобы справиться с этой задачей, команда телескопов Event Horizon насчитывает более 200 ученых и 8 радио обсерваторий, расположенных на четырех континентах. Чтобы объединить наблюдения в виртуальные с помощью интерферометрии, требуется объединение радиосигналов с изысканной синхронизацией, чтобы они были практически одновременными. Самые точные в мире атомные часы использовались для отметки времени всех записанных данных с радиотелескопов.

Соединения с Интернетом были недостаточны для передачи огромного количества данных, поэтому они были записаны и физически отправлены в компьютерные центры в США и Германии для анализа. Приборы, разработанные учеными из Berkeley SETI, внесли свой вклад в замечательные электронные и аналитические возможности операции. Первой целью была сверхмассивная черная дыра в галактике M87. Астрономы уже видели, что массивные струи заряженных частиц простираются на тысячи световых лет от центрального источника, но двигатель, приводящий в действие выбросы, оставался невидимым см. Фото выше эмиссионной струи, снятой с телескопа Хаббла. В связи с тем, что погода сотрудничала во многих местах, в апреле 2017 года проводились одновременные наблюдения в течение большей части десятидневного периода. Для интерпретации данных и восстановления изображения по сигналам, полученным со всех телескопов, потребовалось почти два года.

Немногие физики взялись за этот вопрос, но в 1939 году Роберт Оппенгеймер и Хартленд Снайдер рассчитали, как массивная звезда, лишенная ядерного топлива, будет бесконечно взрываться до точки «сингулярности». Ничто, кроме ее гравитационного поля, не будет сохраняться для внешних наблюдателей. Уникальные свойства черной дыры продолжают оставаться предметом изучения великих умов теоретической физики. Общая теория относительности описывает материю и пространство в большом масштабе, в то время как квантовая механика описывает свойства очень малых с выдающейся предсказательной силой. Но эти две теории имеют фундаментальные различия в своих математических основах, включая саму природу пространства, что делает их несовместимыми везде, где они оба необходимы для описания реальности. Это существо, где интенсивная масса ограничена крошечными пространствами. Два места, где происходит это столкновение теорий, находятся в начале вселенной большого взрыва и в черных дырах. Общая теория относительности предсказывает, что ничто не остановит коллапс до сингулярности звезды, более чем в десять раз превышающей массу Солнца, когда оно исчерпало внешнее давление своего ядерного синтеза.

И ничто не остановит падение неосторожного космического путешественника, когда он упадет в черную дыру. Но может ли вселенная действительно иметь массовый контракт с бесконечно малой точкой? Многие ученые надеются, что возможная теория квантовой гравитации покажет, что такая особенность предотвращена. Поиски этой теории остаются одной из величайших задач современной физики. Первое «обнаружение» черной дыры произошло не от ее непосредственного наблюдения, а от анализа ее взаимодействия с соседними звездами. Более десяти лет, начиная с 1960-х годов, усовершенствования в орбитальных рентгеновских обсерваториях предоставили подробную информацию о мощном источнике рентгеновских лучей, названном Cygnus X-1. Было установлено, что оптически видимая звезда вращается вокруг оптически темного спутника, который был источником рентгеновского излучения. Масса и движение видимой звезды говорят о том, что масса невидимого спутника примерно в 16 раз превышает массу Солнца, что вполне соответствует теоретическому диапазону неизбежного коллапса в черную дыру.

Рентгеновское излучение должно было возникнуть в результате сильного движения и столкновений частиц, когда черная дыра проглотила вещество, оттянутое от звезды-компаньона. В те годы, когда наблюдения улучшились, физики Кип Торн и Стивен Хокинг сделали известную ставку на то, действительно ли Cygnus X-1 была черной дырой. Возможно, уступку Хокинга во время посещения офиса Кипа Торна в Калифорнийском технологическом институте в 1990 году можно было бы считать появлением всеобщего признания того, что черные дыры действительно существуют в нашей вселенной. С тех пор многие другие черные дыры в диапазоне размеров звездных масс были обнаружены путем измерения их влияния на вращающиеся звезды. И в последние три года мы наблюдали эффективное обнаружение обсерваториями LIGO гравитационных волн, создаваемых парами черных дыр с массой 20-30 солнечных в последние моменты, когда они объединялись в спирали, превращаясь в одну черную дыру. Но теперь мы знаем, что во Вселенной много черных дыр, намного больше звезд. В 1963 году Мартен Шмидт ломал голову над недавно обнаруженными звездообразными объектами, которые имели непостижимые спектры. В конце концов он понял, что спектральные линии, которые озадачивали астрономов, были на самом деле знакомыми линиями, которые были чрезвычайно красными.

В этот момент сверхмассивная черная дыра в центре такого активного ядра поглощает окружающее вещество, формируя аккреционный диск. Это подтип блазара — активного галактического ядра с мощной релятивистской струей или джетом, направленным в сторону наблюдателя. На изображениях, полученных Телескопом горизонта событий, видна яркая особенность, расположенная на южном конце джета. Снимок квазара NRAO 530, полученный с использованием различных методов визуализации. Джет квазара простирается в проекциях на плоскости неба на расстояние, которое свет проходит примерно за 1,7 года.

На фото показали магнитное поле вокруг сверхмассивной чёрной дыры нашей Галактики

в галактике Messier 87 (M87) в созвездии Девы. The Event Horizon Telescope is an international collaboration aiming to capture the first image of a black hole by creating a virtual Earth-sized telescope. По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» (Event Horizon Telescope) — телескопы восьми обсерваторий на разных. Данные проекта «Телескоп горизонта событий» позволили ученым получить изображение тени сверхмассивной черной звезды. Карта размещения обсерваторий Телескопа горизонта событий (Event Horizon Telescope), включающий восемь обсерваторий в шести местах (ESO).

5 неподвластных учёным загадок космоса, которые раскроет только телескоп Уэбб

Траектория полёта и маршрут зонда "Новые горизонты" к Плутону. 12 мая астрофизики проекта Event Horizon Telescope опубликовали первую в истории фотографию сверхмассивной чёрной дыры Стрелец A из самого центра нашей Галактики. Изображение было получено международной исследовательской группой – Коллаборацией «Телескоп Горизонта Событий» («Event Horizon Telescope» EHT), которая выполнила наблюдения объекта при помощи глобальной сети радиотелескопов. Они также использовали данные 2017 года, полученные с помощью глобальной сети телескопов EHT (Телескоп горизонта событий). и миллиметровых обсерваторий под названием Телескоп горизонта событий (Event Horizon Telescope, EHT) получила первое в истории изображение тени сверхмассивной черной дыры в центре нашей галактики Млечный Путь.

Астрономы впервые измерили магнитное поле в окрестностях сверхмассивной черной дыры

Event Horizon Telescope Сеть обсерваторий из проекта «Телескоп горизонта событий» (EHT) опубликовала первое изображение тени сверхмассивной черной дыры в центре нашей галактики Млечный Путь.
Статьи по теме «Event Horizon Telescope» — Naked Science Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) представили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный Путь, в которой располагается Земля.
«Необычайное объявление» о центральной черной дыре нашей галактики ожидается 12 мая Европейская южная обсерватория совместно с "Телескопом горизонта событий" представили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный Путь, в которой находится Земля.
Черную дыру впервые разглядели в телескоп Using the Event Horizon Telescope, scientists obtained an image of the black hole at the center of galaxy M87, outlined by emission from hot gas swirling around it under the influence of strong gravity near its event horizon.
Телескоп горизонта событий получил изображения квазара в 7,5 млрд световых годах от Земли Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики.

Черную дыру впервые разглядели в телескоп

Изображение было получено международной исследовательской группой – Коллаборацией «Телескоп Горизонта Событий» («Event Horizon Telescope» EHT), которая выполнила наблюдения объекта при помощи глобальной сети радиотелескопов. Сеть обсерваторий из проекта «Телескоп горизонта событий» (EHT) опубликовала первое изображение тени сверхмассивной черной дыры в центре нашей галактики Млечный Путь. Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики. Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) представили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный Путь, в которой располагается Земля.

5 неподвластных учёным загадок космоса, которые раскроет только телескоп Уэбб

We have collected in our collection street art that you can see in everyday life, as well as those of which you did not even know existed. The aim of the project is to combine the real world and the digital, using street art. We want to show that the same street art equally exists in different forms.

Заснять космический объект удалось с помощью глобальной сети радио- и миллиметровых обсерваторий «Телескоп горизонта событий». Материалы по теме:.

Подобное открытие противоречит популярной сегодня теории о том, что почти все видимое излучение, вырабатываемое сверхмассивными черными дырами, рождается внутри джетов. Ни один другой объект не ведет себя подобным образом. Альтернативное объяснение — ее выбросы направлены прямо на нас", — рассказывает Иссаун. Как это возможно, астрофизики пока не могут сказать, но они склоняются в пользу того, что выбросы черной дыры действительно могут быть направлены в сторону Земли.

Недавно обработанное изображение позволяет астрономам выявить происхождение этих полей до их происхождения в горячем хаотическом кольце наэлектризованного газа или плазмы, диаметром около 30 миллиардов миль, что больше в четыре раза орбиты Плутона. Это достижение стало возможным, потому что свет от диска частично поляризован, вибрируя больше в одном направлении, чем в других.

В течение многих лет астрономы обсуждали, были ли магнитные поля, окружающие так называемые черные дыры низкой светимости, такие как M87, слабыми и турбулентными или «сильными» и когерентными. В этом случае, сказал доктор Чаэль, магнитные поля достаточно сильны, чтобы прервать падение газа и передать энергию от вращающейся черной дыры к струе. В результате, по словам доктора Доулмана, «это придает излучаемым радиоволнам азимутальный поворот», наблюдаемый в изгибе новых поляризованных изображений. Он отметил, что азимутальный поворот будет «прекрасным названием для коктейля». По словам доктора Доулмана, побочным продуктом этой работы стало то, что астрономы смогли оценить скорость, с которой черная дыра питается окружающей средой. По-видимому, она не очень голодна; черная дыра съедает «ничтожную» одну тысячную массы Солнца в год. Доктор Доулман уже закладывает основу для того, что он называет телескопом Event Horizon «следующего поколения», который будет снимать видео с этой магнитной силовой установкой в действии. Мы знаем, что это происходит, но не знаем, как это работает».

Телескоп горизонта событий заметил колебание тени черной дыры

Астрономы впервые зафиксировали фотонное кольцо у черной дыры The Event Horizon Telescope has released the first-ever image of a black hole.
Event Horizon Telescope releases first ever black hole image | Event Horizon Telescope reveals magnetic fields around the.
Event Horizon Telescope releases first ever black hole image Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530.

Event Horizon Telescope

Задолго до того, как у астрофизиков появились инструментальные возможности для фотографирования таких чёрных дыр, их изображения пытались получить при помощи компьютерного моделирования. Один из таких рисунков на фото справа — первый результат компьютерной симуляции аккреционного диска, который создал в 1978 году французский астроном Жан-Пьер Люмине. Визуализацию он создавал, уже имея в виду объект в центре галактики M87, который сфотографируют только через сорок лет. Кроме доступных на тот момент вычислительных мощностей, за неимением компьютерной рисовалки, ему пришлось использовать самодельную «аналоговую» технику, нанося на бумагу тушью точки с плотностью, соответствующей компьютерному расчёту. Тогда это, по-видимому, воспринималось как научная игрушка без особых приложений: визуализация таких объектов вошла в моду только через десять лет, и в конце 1980-х годов появились первые «истинно-компьютерные» изображения аккреционных дисков. Оба снимка чёрных дыр созданы на основе массива данных радиотелескопов, собранных в 2017 году.

Собрать паззл из снимков «нашей» чёрной дыры оказалось значительно труднее. Газ вблизи чёрной дыры движется со скоростью, близкой к скорости света. Характерное время обращения вокруг значительно более скромной дыры в Стрельце — это минуты. Для сбора итогового снимка потребовалось пять лет работы коллаборации EHT более 300 специалистов из 80 научных учреждений разных стран с использованием суперкомпьютеров.

Изображение сформировано световыми лучами, искривленными мощной гравитацией черной дыры, масса которой в четыре миллиона раз превышает массу нашего Солнца», — говорится на сайте Европейской южной обсерватории.

Теперь они имеют возможность сравнивать изображения черных дыр друг с другом и искать отличия. В материале уточняется: над получением результата работало более трехсот исследователей из 80 институтов всего мира.

Чтобы получить изображение этого объекта, астрофизики использовали сеть из восьми обсерваторий в разных частях Земли, которые и образуют все вместе виртуальный телескоп размером с планету, носящий название Телескопа горизонта событий. Сбор данных велся в течение «множества ночей» по много часов подряд, что можно сравнить с фотосъемкой с длинной экспозицией, говорят ученые. Затем информация долго обрабатывалась суперкомпьютерами. Это было словно пытаться сделать четкое фото щенка, стремительно гоняющегося за собственным хвостом», — говорит о работе ученых Чи-Кван Чан из Университета Аризоны. Полученные изображения — это результат сведения воедино различных снимков, их «среднее арифметическое».

От обычного квазара они отличаются расположением. Объединив данные с нескольких телескопов, исследовательская группа смогла создать два изображения.

Оба показывают яркость на южном конце одной струи, которая, по мнению исследователей, является радиоядром. Разрешение изображений было достаточно высоким, чтобы были видны два компонента ядра. Источник: Phys.

Астрономы впервые зафиксировали фотонное кольцо у черной дыры

Вчера команда телескопа Event Horizon заявила, что нашла нечто «ошеломляющее» в нашем Млечном Пути. Кстати, «Телескоп Горизонта Событий» будет не единственным участником операции. Траектория полёта и маршрут зонда "Новые горизонты" к Плутону. Данные проекта «Телескоп горизонта событий» позволили ученым получить изображение тени сверхмассивной черной звезды.

Похожие новости:

Оцените статью
Добавить комментарий